Breaching Barriers to Continuous
Delivery with Automated Test Gates

Chris Struble

cstruble@vertafore.com

Abstract

Continuous Delivery may have come out of companies that were “born on the web”, but what if you are in
a regulated, mature industry with sensitive customer data, where every change to production must be
approved by a review board? How can you design, deploy, and execute automated tests that will work in
environments that cannot be directly accessed by your team? How can you breach barriers to Continuous
Delivery in a business context where the walls between development and operations are rigorously
maintained?

Vertafore is an intermediary in the insurance industry, providing information solutions for insurance
agencies, carriers, managing general agents, and state agencies. When our team was tasked with
enabling Continuous Delivery, we faced all of the above challenges. We overcame them using Jenkins,
Artifactory, and Chef to build a Continuous Delivery system with automated test gates for promoting
product and test code from Development through Staging to Production.

Our Continuous Delivery system supports automatic promotion based on test results, or manual approval.
Because of this flexibility, we were able to get adoption from product teams at each of the different stages
of Continuous Delivery process maturity. It also provides a common way to deploy and test that our
developers, testers, and release engineers can use in the same way in each environment. The system
has enabled our company to increase the size and frequency of releases.

This paper will cover the key patterns that our team developed or discovered in our journey, which can
help you in creating your own Continuous Delivery system, regardless of the tool set.

Biography

Chris Struble is a Senior Software Engineer in Test at Vertafore in Bothell, Washington. He has 20 years
of experience in software testing and infrastructure, build, deployment, and test automation. He holds
Masters Degrees in computer science from Walden University and mechanical engineering from the
University of Houston. Currently, he is focused on improving software quality and Continuous Delivery. He
lives in Renton, Washington, with his wife, two teenagers, and three cats.

Copyright Chris Struble 2016

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 1

1 Introduction

The ability to deliver software changes to users quickly and reliably has become as important as the
features of the software itself. Today’s users have smart phones, smart televisions, tablets or other
devices with applications that update continuously, accessing web applications hosted on cloud
environments that themselves are updated multiple times a day without the end user even being aware.

These changes came about because many leading companies have implemented Continuous Delivery
practices. Jez Humble defined Continuous Delivery as “a set of principles and practices to reduce the
cost, time, and risk of delivering incremental changes to users”. Organizations doing Continuous Delivery
typically have automated deployments, delivery pipelines, and extensive automation of infrastructure,
deployment and testing across all environments, including Production.

Vertafore is an intermediary in the insurance industry, providing information solutions for insurance
agencies, carriers, managing general agents, and state agencies. The company’s products touch every
point of the distribution channel. Their engineers support dozens of products that combine to make the
broadest and most complete portfolio of software in the insurance industry. Technology is rapidly
transforming the insurance industry, incenting companies to move away from large monolithic
applications and toward web services that can be released more quickly and reliably. Speed and reliability
are critical in an industry-- venture capitalists have invested more than $2.2 billion dollars in the industry
over the last five years and they anticipate a return for their investments.

What has not changed are the strict rules about handling of confidential customer information in the
insurance industry. An example is the Health Insurance Portability and Accountability Act (HIPAA), which
includes network security rules that require companies providing solutions to limit access to personal
health information (PHI) of individuals.

To comply with such rules, Vertafore limits access to its production environment to essential personnel,
such as system administrators and release engineers. Any changes to production must be approved and
documented by a change review board and must be initiated by an operations release engineer during
approved maintenance periods only. Most of our software development engineers have no access to
production and our network rules do not allow updates to be pushed into production by non-operations
staff.

These constraints might appear to be a significant barrier to doing Continuous Delivery. However, in
reality, Vertafore has been doing Continuous Delivery for several years. We just do it differently.

2 Case Study: Continuous Delivery at Vertafore

Our journey toward Continuous Delivery started in 2012, when Vertafore formed a team called
Continuous Quality in our Bothell, Washington office. This team, which included the author, was initially
focused on improving test automation for three of our largest management systems: AMS360,
BenefitPoint, and Sagitta.

Agile development already was well established at Vertafore, with our product development teams
already using a Scrum process, and most using Microsoft Team Foundation Server (TFS) to track work
items, run manual tests, and store and build source code continuously. Many of our development teams
also used behavior-driven development (BDD) to create automated acceptance tests with SpecFlow.

Our team’s first project was to develop new Ul tests in C# with Selenium WebDriver for .NET, based on
SpecFlow scenarios provided to us by the product development teams. We set up a Jenkins continuous
integration build server with Windows test agents to run the test cases on demand.

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 2

As we improved the test cases to make them more stable, we realized we could abstract much of our
code to a framework. We called the framework “Firefly” and shared it internally with our product
development teams as a NuGet package.

Our team’s first NuGet repository was a file share. As more product development teams began to use our
framework and began to create their own NuGet packages to share .NET code with each other, we
needed a repository manager that could scale with the growing demand.

We decided on Artifactory Pro. One factor driving that decision was that our team’s charter had just
expanded. We were tasked to implement an automated Continuous Delivery pipeline to support an Agile
Release Train for Vertafore Agency Platform, a suite of new products designed to work together in a
services-centric architecture. The pipeline needed to work across multiple environments, some of which
are isolated.

A key feature of Artifactory Pro that would enable our pipeline was the ability to replicate artifacts between
multiple Artifactory instances. Artifactory Pro had good integration with Jenkins, NuGet support, and a
REST API, each of which was an attractive feature for us. We set up an Artifactory Pro server and were
soon using it to host NuGet packages and other binary artifacts built on our Jenkins server.

Our Agile Release Train is a release management process that is part of the Scaled Agile Framework.
Agile release trains occur on a regular schedule, with high quality, but with variable scope. In the release
train metaphor, releases are equivalent to trains, while individual software products are equivalent to
freight cars. If the product isn’t ready, the release continues without it, but, no worries, the product can
always go out with the next release.

Our team held sessions to visualize how a fully automated Continuous Delivery pipeline would work. Our
design used Jenkins and Artifactory as the foundation and made extensive use of available plugins to
implement parts of the pipeline and custom tools to implement any missing pieces. We called our delivery
pipeline concept the Automated Deployment System (ADS) and the name stuck.

Figure 1 shows how ADS works to deliver our software through the development environment.

The ADS delivery pipeline begins when a software engineer checks in code to TFS. This triggers a
Jenkins build job, which builds the code, runs unit tests, and publishes the artifacts to Artifactory.

Our Artifactory Pro server has artifact repositories, including a Development repository and a Release
repository. Artifacts are always published to the Development repository, never to the Release repository.

Once the code is published, a “gate evaluation” Jenkins job is run to analyze the test results file from the
unit tests. The gate evaluation job takes several parameters, such as the build being evaluated and the
pass score, i.e., the percentage of test cases that must pass for the build to pass the unit test gate.

If the build passes the unit test gate, a deploy job is run to deploy the product into the development
environment. After deployment, additional automated tests may be run (such as web service tests,
integration tests, endpoint validation tests, and user interface tests), each of which may have test gates
run to evaluate the test results.

If the build passes all of the test gates, the artifacts are automatically promoted to the Release repository.
If any of the test gates fail, the build fails and the artifacts remain in the Development repository.

Product development teams are able to specify which test gates to include in their workflow and the
required pass score for each gate. Typically teams require a pass score of 100%.

The development teams also are able to use a manual gate in their workflow. Providing support for
manual gates allowed us to support development teams who were not as far along in their automated
testing, or who were not comfortable with an automated process making release decisions.

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 3

To deliver our software all the way to Production, we had to use a different process than we used in
Development. To explain why we had to do that, | need to digress and tell a short story.

ADS Delivery Pipeline in Development Environment

Software Engineer TFS Jenkins Artifactory
P Check-In Code Trlgge'rk?:nklns Run build job
build job
A 4
— 1
h 4 h 4
Unit test gate (Publish artifacts]
to Dev repo
\ 4

[failed]

Associate build
info to artifacts

Run deploy job

Integration test
gate

[failed]

Ul test gate

[failed]

Promote
artifacts to
Release repo

h 4

Email build) - Q
results v

Development Environment

Figure 1 — ADS Delivery Pipeline for Vertafore Agency Platform in the Development Environment

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 4

3 Story: A Game of Gates

Imagine for a moment that you are in Europe, sometime in the Middle Ages.

You are a merchant, the owner of a cart filled with trade goods. You want to get your goods to the market.
The market is in the courtyard of a huge castle, surrounded by a series of stone walls and gates, each
larger and stronger than the one outside it. You have a letter from a buyer who lives inside the castle, but
you have never met her or previously been to this castle.

On a perfect day, all the gates of the castle would be open and you could just drive your cart into the
market, deliver your goods, get paid, and go home.

When you arrive at the castle, the first gate is wide open. The guards barely look at you as you enter the
outer courtyard.

Then you notice that the second gate is closed. The guards at the gatehouse are not smiling. You ask the
captain of the guards to open the gate. He refuses. It seems there are rumors of assassins. He doesn’t
know you and won't let you in. Nothing personal. Orders from the king and all that.

For a moment you contemplate knocking in the gates with a battering ram. Then you remember that
these people are not your enemies. You want to do business with them, not fight them.

Eventually you get an idea. “If you won'’t let me in, will you take a message to my buyer?” you ask the
captain of the guards. “Tell her to come out of the gate once each day. If she wants to buy my goods, she
can take them inside. Otherwise, she can leave them here.”

The captain considers your proposal and eventually agrees. But he warns you. “Behind this wall is the
inner gate, the largest of all. The captain of that gate isn’t as friendly as | am. He only opens the gate at
certain times of the day and he personally inspects everything. He won'’t let anything through unless there
is paperwork listing every single item and every person that has come into contact with it. Can you do
that?”

You agree. Each morning you bring your goods to the castle in your cart and sometime later your buyer
comes out with her own cart. Sometimes she isn’t able to get your goods past the inner gate, and
sometimes she doesn’t want them at all. But enough of your goods get through to make it worth the effort.
And though you never meet your buyer face to face, you both get very rich.

4 Getting to Production

To extend the ADS delivery pipeline to Production, we had to have conversations with our security and
operations teams. Vertafore has a Staging environment that our release engineers use to practice
releases and identify deployment issues before releasing to the Production environment. Staging and
Production are both isolated. Jenkins does not deploy directly into those environments, and a security
exception was required

Like the merchant’s request to the captain of the guards to open the castle gates in the story, our request
to open a security exception for Jenkins was initially denied. For numerous security and business
reasons, push-button deployments into Staging and Production are not allowed. But we were told that a
deployment initiated from inside Staging or Production would be acceptable.

Our solution was to place an Artifactory Pro server inside Staging and Production and use the replication

feature to request artifacts from our main Artifactory server in Development. Because replication requests
are initiated from inside Staging or Production, we could meet Vertafore’s security requirements. Figures

2 and 3 show the architecture and activity diagrams for our solution.

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 5

Every 10 minutes, the Artifactory Pro servers in Staging and Production initiate requests to our main
Artifactory Pro server in Development for any new artifacts. Only the Release repository is replicated, to
ensure that only promoted artifacts are available to be deployed in Staging or Production.

Continuous Delivery Pipeline Architecture

Development Environment Staging or Production Environment

—_——— e e e —_——— e e e

Artifactory server

Build server Build agent Deploy server Deploy agent

Artifactory
Replication

Deploy agent

Target servers Target servers

Chef server Chef server

e SSEsEat

Figure 2 — Architecture of ADS Delivery Pipeline for Vertafore Agency Platform

The first product to use ADS to deliver to Production was contained in the December 2013 release of
Vertafore Agency Platform. Six months later, 90% of the products on the Agile Release Train were using
ADS to deliver all the way to Production. The only exceptions are legacy products that still require manual
deployment.

As more products used ADS, a new problem emerged. Small differences between the Jenkins and
Artifactory servers in Development, Staging, and Production, and between the versions of the Jenkins
jobs in each environment, were causing deployment failures. These occurred because machines had
been configured manually, often by different people.

We turned to Chef, an infrastructure automation tool, to help us solve this configuration problem. Chef
uses scripts called “recipes” to ensure that machines are in a desired state. We created Chef recipes to
configure our Artifactory and Jenkins servers, agents, and jobs, so that deployments and tests would

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 6

work the same across all environments. Prior to each release, we update the Chef recipes and apply the
updates to the Artifactory and Jenkins servers and agents in each environment.

Delivery Pipeline in Staging or Production

Release Engineer Chef Jenkins Artifactory

Replicate
artifacts from
Release repo of
Development
Artifactory

O

Update Chef

Update Jenkins
cookbook for P
. deploy and test
Jenkins deploy .
jobs
server

Sync build info

»(Run build-sync) » [Run build-sync from
Ll . Ll .
\ job) job Development
Artifactory
Enter build name
P and numberinto P Run deploy job
deploy job ;
h 4
Run endpoint
validation test
L
A 4
Y
Run integration
test job
c —
.0
=1
(S}
3
S A 4
o
— Communicate » O
o Lt
o0 results Q
C
)
©
2l
Figure 3 — Activity Diagram of ADS Delivery Pipeline in Staging and Production
Excerpt from PNSQC 2016 Proceedings PNSQC.ORG

Copies may not be made or distributed for commercial use Page 7

Since we started using Chef to configure the machines in the ADS delivery pipeline, deployment failures
in Staging and Production have declined significantly.

By 2016, ADS grew to more than 800 Jenkins jobs, with more than 8000 artifacts being published to
Artifactory each month. It has made releases more predictable and reliable. The Agile Release Train has
consistently delivered at least one release a month for over two years, with an average of 10 products per
release, with 100% of packages delivered by the development teams being released successfully.

Monthly releases may not seem very fast, especially compared to large web companies that release
multiple times per day. But when needed, one of our software development teams can build, publish, test,
promote, and replicate a fix to make it available for release engineers to deploy in Production very
quickly, in less than 30 minutes in most cases.

5 Patterns

The Continuous Delivery system we built is very specific to Vertafore. It had to be. When we started, there
were few commercial or open source tools available for Continuous Delivery and none that we found
could work with isolated environments. More tools are available now, but many still are designed for
building source code in the cloud and deploying to production servers in the cloud, both of which are not
options for us.

What about your company? If your company has strict business and security rules, as ours does, you
may have to create a customized system. Below are a few patterns we found helpful in this effort.

5.1 Separate Build and Deployment Code

Building and deploying software are distinct tasks. The code that does these tasks should be separated
as much as possible.

If you have to rebuild your product code because of a change in the deployment process, a change in an
environment, or an incorrect target server name, your deployment code and product code are too closely
coupled.

Getting this wrong is not a catastrophe, but it does mean your product will build more often than
necessary, causing delays and wasting machine time and artifact storage. Product code can be very
large, while deployment code is typically very small. The less code you have to rebuild the better.

5.2 Standardize Machine Types

Machines in a delivery pipeline need to do different types of work, such as building, deploying, and
testing. It is essential to standardize machine types based on the work they need to do and to use
software to ensure they have the tools needed to do that work. Without standardization, the default is to
configure machines by hand, on the fly, leading to uncontrolled differences between machines that grow
over time and to unexpected failures.

We have a few Jenkins machine types: build servers, deploy servers’ build agents’ deploy agents, generic
test agents, and Ul test agents. Each of these machine types is defined by different Chef recipes. When
we need to update one of the machine types, we update the corresponding Chef recipe and apply it to all
the machines of that type at the same time. This approach enables resilience.

Your list of machine types will surely be different, but the point here is to have a list, not to let every
machine be unique in an uncontrolled manner.

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 8

5.3 Separate and Promote Artifacts

Any delivery pipeline needs a mechanism to identify artifacts that are approved for release and to prevent
unapproved artifacts from being released. A simple way to do this is to keep artifacts in separate
repositories, such as Development and Release.

Promotion consists of moving artifacts from Development to Release. The promotion process should
automatically tag the artifacts with information about who promoted the artifacts and by what process.

Repository separation and promotion can be used with any repository manager to ensure that artifacts
cannot be released unless they have passed though the steps of the delivery workflow.

5.4 Automate Promotion with Test Gates

In waterfall software development, quality gates are project milestones that exist between phases of a
software lifecycle. Validation of a quality gate typically involves a high-level review of checklists to
determine if the project can move on the next phase.

Test gates have a similar purpose, but are automated. A test gate evaluates test results or other output
from a build and determines if a promotion criteria was satisfied. If the criteria are satisfied, the build and
its artifacts are promoted through the pipeline, automatically.

What test gates would you want your software to have to pass through before being approved for
release? Unit test gates, functional test gates, security gates, code coverage gates, and performance test
gates are just a few of the possible gate considerations.

Any pipeline will need to have a manual gate process as well. Test gates can fail like any other
automation, and they depend on automated test cases or other assets that might not exist for every
product you have to move through your pipeline. Even when they exist, automated test cases may
produce false failures due to incorrect assumptions in the test criteria, causing a test gate to fail even
though it would have passed if the test case had been fixed. Only humans can make these type of
decisions.

5.5 Artifact Retention

Any delivery pipeline will need to include a strategy for retention and cleanup of artifacts. This is driven by
storage limitations, but also by performance. Some questions you will need to answer:

e How long do we keep artifacts that were never promoted?

e Should we delete artifacts that failed a test gate?

e How long do we keep artifacts that were promoted, but not deployed to Production?
e How long do we keep artifacts that were deployed to Production?

There is no right answer to any of these questions, and you probably don’t need to answer them right
away, but unless you have an unlimited storage budget, you will have to answer them eventually.

Our pipeline discards un-promoted artifacts after three months. That frees up disk space while giving
development teams enough time to get their artifacts tested and promoted. We keep promoted artifacts
indefinitely, at least for now. If we get to the point where we have to clean those up as well, we will
probably retain them for several years.

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 9

5.6 Automated Rule Compliance

In your delivery pipeline, you may want to discourage your users from doing things that your pipeline tools
do not prevent, but that nevertheless are a bad idea. A simple way to do this is to have an automated
script check for rule violations.

For example, we want Jenkins users to configure their jobs such that builds are cleaned up. Otherwise,
our build agents get filled up with old builds. So we created a job that checks all the other jobs on our
build server and sends an email with a list of jobs that are not being cleaned up properly.

We have a similar job that checks to make sure all the jobs that publish artifacts to Artifactory clean up
published artifacts for jobs that have been discarded.

Another job checks to see if anyone has configured their Jenkins job to publish directly to the Release
repository without going through the promotion process.

All of these rules were created because people did things that actually caused problems. Once we had
automated jobs running daily to check for violations, all the violations were eliminated, with new violations
appearing only occasionally, mainly due to new users not being aware of the rules.

5.7 User Engagement

When building a customized delivery pipeline, it is essential to engage the software development teams
that will be using your pipeline, explaining the benefits of using it and how to use it effectively.

Our team has a series of wiki pages that explain how to use our tools, and we give periodic training
sessions to new users, including classes at Vertafore’s annual developer training conference. We use
email lists for support requests and announcements of maintenance windows and technology upgrades.

Finally, we have governance bodies for best practices, including a Chef developers’ group and a Center
of Excellence for Release Engineering processes and tools.

6 Final thoughts

Delivering software to customers is not an optional function: it is the reason we are all in this business.
You have to do it, so you might as well do it well. Continuous Delivery, at its core, is a commitment to
continuously improving the velocity of software releases, while reducing the cost and risk of delivering
software. If there are barriers in your business that prevent you from improving every part of your delivery
pipeline right now, don't let it stop you from being creative and transforming what you can transform.
Tomorrow, when better tools are available, you will be in a better position to understand how to deliver to
your customers in the future.

7 Acknowledgments

| wish to acknowledge the contributions of everyone who has been part of our Continuous Delivery
journey: Raul Alvarez, Cody Dockens, Saratha Prabu, Rajani Tadanki, David Echols, Rasheed Usman,
Lowell Young, Denzil Dwelle, Cameron Straka, Ebencilin Chandradhas, Venkat Chilakala, Tom Sawin,
Rita McCann, and George Tsang.

| also acknowledge our colleagues from Ernest Mecham’s group at our East Lansing, Michigan office.
They have been on their own Continuous Delivery journey, using Bamboo instead of Jenkins, but
otherwise overcoming many of the same challenges we have, with excellent results.

Excerpt from PNSQC 2016 Proceedings PNSQC.ORG
Copies may not be made or distributed for commercial use Page 10

References

Jez Humble: The Case for Continuous Delivery, 13 Feb 2014
https://www.thoughtworks.com/insights/blog/case-continuous-delivery

Scaled Agile Framework
http://www.scaledagileframework.com/

Artifactory Build Sync User Plugin
https://github.com/JFrogDev/artifactory-user-plugins/tree/master/build/buildSync

PNSQC.ORG

Excerpt from PNSQC 2016 Proceedings
Page 11

Copies may not be made or distributed for commercial use

